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Abstract

The three-dimensional exposure method for the detection of the
boundary of a set of overlapping spheres is presented. Like the two-
dimensional version described in a previous paper, the three dimen-
sional algorithm precisely detects void opening or closure, and is opti-
mally suited to the kernel-mediated interactions of smoothed-particle
hydrodynamics (SPH), although it may be used in any application in-
volving sets of overlapping spheres. The principle idea is to apply the
two dimensional method, on the surface of each candidate boundary
sphere, to the circles of intersection with neighboring spheres. As the
algorithm finds the exact solution, the quality of detection is inde-
pendent of particle configuration, in contrast to gradient-based tech-
niques. The observed CPU execution times scale as O (MN ε), where
M is the number of particles, N is the average number of neighbors of
a particle, and ε is a problem-dependent constant between 1.6 and 1.7.
The time required per particle is comparable to the amount of time
required to evaluate a three-dimensional linear moving-least-squares
interpolant at a single point.

Keywords: smooth particle hydrodynamics, meshless methods, mesh-
free methods, computational geometry
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1 Introduction

In recent years there has been much development of meshfree methods
for computational mechanics. Among these are the smoothed-particle hydro-
dynamics (SPH)[6], [7], element-free Galerkin (EFG)[1], reproducing kernel
particle method (RKPM)[8], and moving-least-squares-particle hydrodynam-
ics (MLSPH)[3],[4] methods. Common to all of these is the replacement of
a conventional mesh composed of non-overlapping cells, zones or elements
with a scattered set of overlapping disks or spheres, each supporting a ker-
nel function for local weighting of information. We refer to such a disk or
sphere as a “particle”, and the broad class of “meshfree” methods as particle
methods, in deference to the original meshfree method, SPH.

Particle methods have a natural advantage over meshed methods for prob-
lems in which topologically discontinuous deformations such as void creation
and collapse, fracture, spallation, fragmentation, splashing and folding occur.
Finite difference or finite element methods need expensive finely-resolved
meshes to capture the detail of these dynamic phenomena. On the other
hand, implementation of boundary conditions is not so clear-cut with parti-
cle methods as it is with meshed methods. One must first locate the points
that comprise the boundary. With meshed methods, this is straight-forward,
but with meshfree methods, it is problematic.

Randles and Libersky [7] have suggested using the sums of the gradients of
SPH kernels. Ideally, these kernel gradients sum to zero for interior particles.
Any particle for which the sum of the kernels is not zero is presumably an
exterior particle. This method gives correct results when the particles are
uniformly spaced, but for non-uniform spacing the kernel sums are far from
ideal, even unpredictable, and a useful specification of the trigger level for
boundary detection remains elusive. Furthermore, if the SPH kernels are
corrected as in MLS so that the interior kernel gradient sums are exactly
zero in the interior [3], the correction spills over the boundary a little bit,
and boundary particles are indistinguishable from interior particles.

Dilts [4] has proposed a purely geometric two-dimensional boundary de-
tection algorithm, dubbed the “exposure method”, such that in two dimen-
sions the “exact” boundary is always found. We draw a circle of radius hi

for each particle i, where hi is the smoothing length of the kernel centered
at particle i. The circle associated with particle i will simply be referred to
as circle i. Assume that the neighbors of every particle have been predeter-
mined by one of the usual techniques (KD tree, quad-tree, etc.) Now consider
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the neighbor particles of particle i and draw their corresponding circles. For
every neighbor circle j that intersects circle i we find the arc that circle j
covers on circle i. If the union of the set of arcs from neighboring circles
completely covers circle i, then particle i is an interior particle. However if
circle i is not completely covered then particle i is a boundary particle. The
coverage is determined by applying a quick sort to left endpoints of the arcs,
and comparing the right endpoints of the sorted set. The operation count of
this procedure is O (MN log N), where M is the number of particles and N
is the average number of neighbors of a particle. For details, see reference
[4]. The boundary so determined is “exact” because in SPH, typically sym-
metrized kernels yield pair interactions that appear and disappear precisely
when the radius-h circles touch or do not touch, respectively. The exposure
method finds exactly those particles which are not completely bathed in in-
teracting neighbors. The exposure boundary is ”exact” also because it is
precisely what would be seen if a physical model of the particle configuration
were constructed.

In this paper we propose an extension of the two-dimensional algorithm
of Dilts [4] to three dimensions. A candidate boundary circle with a set of
surface arcs created by intersections with neighboring circles is replaced by
a candidate boundary sphere with a set of surface circles created by intersec-
tions with neighboring spheres. The chief idea is to apply the two-dimensional
boundary detection scheme to the set of intersection circles on the surface
of the candidate boundary particle. If any arc of an intersection circle is
exposed, then the candidate is a boundary sphere. This criterion produces a
boundary identification exactly the same as would be determined by looking
at the outer surface of a three-dimensional physical model of the particle
configuration. The three-dimensional exposure method thus produces the
exact solution to the problem.

2 Computational Details

Let Si denote the sphere of radius hi (the particle’s smoothing length)
centered at particle i. Assume as in the two-dimensional case that all par-
ticle neighbors have been determined by some means. Let Cij denote the
oriented circle on sphere i given by the intersection of spheres Si and Sj.
Note that Cij 6= Cji because these circles are assigned a different orienta-
tion, as explained in section 2.1. In words, the algorithm proceeds as follows.
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Sphere Si is intersected with all the neighboring spheres Sj and the circles of
intersection Cij are drawn on sphere Si. If these circles of intersection cover
the surface of sphere Si, then particle Si is an interior particle. If sphere
Si is not completely covered, then particle Si is a boundary particle. The
determination of when a sphere is covered by a set of circles on its surface is
not as simple as in the case of two-dimensional disks and arcs. We describe
below a technique to apply the two-dimensional exposure method of Dilts [4]
to each neighbor circle Cij on the surface of sphere Si. If any part of any
neighbor circle Cij is exposed, then particle i is a boundary particle. These
ideas are illustrated in Figure 1.

The following pseudo-code describes the high-level organization of the
algorithm:

find boundary 3D
loop over all particles i

loop j over neighbors of i
if Sj contains Si then

particle i is interior
continue with next i

end if
if Sj does not intersect Si then continue with next j
Cij =sphere intersection(Si, Sj).
if Sj is a known interior particle then mark Cij covered.

end loop
check sphere coverage(Si)

end loop

check sphere coverage(Si)
if there are no circles on Si then

Si is a boundary particle
exit the algorithm.

end if

Sort the Cij by largest to smallest C
(s)
ij

loop over all circles j
Construct interaction list for Cij

Set Lij := [0, 2π)
end loop
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loop over all circles j in sorted order
if Cij is covered then continue with next j
loop k over the interaction list of Cij

circle intersection(Cik, Cij)
circle intersection(Cij, Cik)
Remove Cij from the interaction list of Cik

end loop
end loop
if for every j, Cij is covered then

Si is an interior particle
else

Si is a boundary particle
end if

circle intersection(Cik, Cij)
if Cik is parallel to Cij then

if Cik covers Cij by relation 17 then
return covered

else
return uncovered

end if
end if
Determine number of points of intersection of Cik and Cij.
if there are 2 points of intersection then

Compute Aijk by equation 57
Update Lij by equation 62
if Lij = ∅ then

return covered
else

return uncovered
end if

else
if Cik covers Cij by relation 17 then

return covered
else

return uncovered
end if
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end if

The rest of this section will provide the mathematical details of the three
major functions

sphere intersection
check sphere coverage
circle intersection

of this high-level description in more detail.

2.1 Intersection of two spheres

In computing the intersection of neighboring spheres Sj with the candi-
date boundary sphere Si, five possible cases can arise. Let ri = (xi, yi, zi)
be the center of sphere Si and likewise rj = (xj, yj, zj) is the center of
Sj. Define ∆ijr = rj − ri = 〈∆ijx, ∆ijy, ∆ijz〉, and ∆ij = ‖∆ijr‖, where
‖a‖ = ‖〈ax, ay, az〉‖ =

√
a2

x + a2
y + a2

z denotes the euclidean norm. The five
cases are:

1. ∆ij > hi + hj ⇒ Sj and Si do not intersect.

2. hj ≥ ∆ij + hi ⇒ Sj contains Si.

3. hi ≥ ∆ij + hj ⇒ Si contains Sj.

4. ∆ij = hi + hj ⇒ Sj and Si intersect at one point.

5. ∆ij < hi + hj and |hi − hj| < ∆ij ⇒ Surfaces of Sj and Sj intersect at
circle Cij.

Case 4, where the spheres intersect at one point, is considered the same as
if there spheres did not intersect because a single point of intersection covers
no area on the surface of a sphere. If the spheres intersect at more than one
point, then the following quantities associated with circle Cij from figure 2
are needed:

cos θij =
∆2

ij + hi
2 − hj

2

2dhi

, (1)

λij =
hicos θij

∆ij

. (2)
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The center, cij and radius, C
(r)
ij of Cij are found from

cij = 〈c(1)
ij , c

(2)
ij , c

(3)
ij 〉 = ri + λij ∆ijr, (3)

C
(r)
ij =

√
hi

2 − (hi cos θij)2 = hi sin θij. (4)

These quantities are labeled in figure 2.
The circles of intersection lie on the surface of sphere Si and are not

necessarily co-planar, as shown in figure 4. It is useful to assign each circle
an outward unit normal vector nij, and two unit axis vectors x̂ij and ŷij

(labeled in figure 3) in the following manner:

nij =
1

∆ij

∆ijr (5)

x̂ij =

{
x̂×nij

‖x̂×nij‖ if ŷ × nij = 0
ŷ×nij

‖ŷ×nij‖ if ŷ × nij 6= 0
(6)

ŷij =
nij × x̂ij

‖nij × x̂ij‖
, (7)

where x̂ and ŷ are the global unit vectors in positive X and Y directions
respectively.

2.2 Checking coverage of a sphere

After the all the circles of intersection Cij on sphere Si have been found,
we determine if any are not fully covered by a modified version of the 2D
arc method from reference [4]. If so, then Si represents a boundary particle.
If all the circles Cij for the sphere Si are covered, then sphere Si is covered
and represents an interior particle. If a sphere has no circles on it, then its
corresponding particle is isolated and is thus a boundary particle.

The 2D arc method checks coverage of a given circle by seeing if the union
of the arcs of intersection with all the other circles on the surface of sphere Si

contains the given circle. The efficiency of this process is enhanced by bor-
rowing an idea from Iwai et. al [5]. Before computing the circle intersections,

we assign a size C
(s)
ij to each circle, representing the angle subtended about

the origin of Si, and sort the circles Cij by C
(s)
ij . By considering the largest

circles first we enhance the probability of completely covering up more circles
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early on. Once a circle is determined to be covered, it is not required to com-
pute any more intersections for it. Since circle intersections are the expensive
part of this algorithm, the overall cost is reduced by having to consider fewer
than the the nominal Ni

2 intersections, where Ni is the number of neighbors
of Si. The angle C

(s)
ij estimates how much of the surface of sphere i is covered

by Cij and is given by:

C
(s)
ij =


tan−1

∣∣∣∣ C
(r)
ij

λij∆ij

∣∣∣∣ if nij · dij > 0

2π − tan−1

∣∣∣∣ C
(r)
ij

λij∆ij

∣∣∣∣ if nij · dij ≤ 0,
(8)

where dij = cij − ri.
We assign spherical coordinates to the surface of sphere Si by placing the

poles at the points of minimum and maximum global z coordinates. After
sorting, for each circle Cij, an interaction list of circles that could possi-
bly intersect Cij is formed by searching for circles whose latitude-longitude
bounding boxes overlap the bounding box for Cij. This further reduces the
total number of circle intersections to less than the nominal Ni

2.
The latitude and longitude of the circle centers are given by

lat(Cij) = sin−1

(
c
(3)
ij − zi

λij∆ij

)
, (9)

lon(Cij) =


0 if

(
c
(1)
ij − xi

)2

+
(
c
(2)
ij − yi

)2

= 0

γij if c
(1)
ij − xi ≥ 0 and c

(2)
ij − yi 6= 0

2π − γij if c
(1)
ij − xi < 0

, (10)

where

γij = cos−1

 c
(1)
ij − xi√(

c
(1)
ij − xi

)2

+
(
c
(2)
ij − yi

)2

 . (11)

The latitude takes on values in [0, π] where 0 represents the south pole (min-
imum value of z) and π is at the north pole (maximum value of z). The
values for longitude are [0, 2π). If the center of a circle is located at one of
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the poles, then there is an ambiguity in its longitude which is removed by
setting the value to zero.

The minimum and maximum values of latitude and longitude of all points
on the circle Cij is given by

minlat(Cij) = max
{

0, lat(Cij) +
π

2
− C

(s)
ij

}
, (12)

maxlat(Cij) = min
{

π, lat(Cij) +
π

2
+ C

(s)
ij

}
, (13)

minlon(Cij) =

{
circ

(
lon(Cij)− C

(s)
ij

)
, lat(Cij) ≥ C

(s)
ij − π

2

0 otherwise
(14)

maxlon(Cij) =

{
circ

(
lon(Cij) + C

(s)
ij

)
, lat(Cij) ≤ π

2
− C

(s)
ij ,

2π otherwise
(15)

where

circ(α) =


α + 2π if α < 0

α if α ≥ 0 and α < 2π

α− 2π if α > 2π.

(16)

The above formulas enforce the requirement that the circle’s range of latitude
is [0, π/2] and the longitude range is [0, 2π].

Suppose Cik is in the interaction list of Cij. Once we compute the inter-
section of Cik with Cij, we remove Cij from the interaction list of Cik so that
this pairwise intersection is not computed twice.

2.3 Circle intersection algorithm

For the modified arc method, each circle Cij is checked for intersection
with the other circles Cik, accounting for the fact that these circles may
not lie in the same plane. If the union of the resulting intersection arcs
reconstitutes Cij completely, then circle Cij is covered. Alternatively, if the
intersections of the complements of the intersection arcs is empty, then the
circle is covered. This leads to a more efficient method for determining circle
coverage, described below.
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2.3.1 Intersection of two circles - Preliminaries

If nik × nij = 0 then Cik is parallel to Cij and a check is done to see if
Cik covers Cij using

dCijk · nik ≤ 0⇒ Cij is covered, (17)

where dCijk = cik − cij. Observe that this check must be done even when
the circles do not intersect, as shown in Figure 4.

If the circles are not parallel, then their planes intersect, in which case
we find the line of intersection Lijk of the two planes. Knowledge of Lijk

allows us to determine if the circles themselves intersect, and if so, what are
the points of intersection. The equations of the planes of the two circles in
point-direction form are:

nij · (r− 〈c(1)
ij , c

(2)
ij , c

(3)
ij 〉) = 0, (18)

nik · (r− 〈c(1)
ik , c

(2)
ik , c

(3)
ik 〉) = 0,

where r = 〈x, y, z〉. A parametric equation for Lijk is given by

r = αuijk + pijk, (19)

where α is a scalar parameter, uijk is a direction vector, and pijk is a point
on the line Lijk. Observe that uijk = nij × nik.

The solution for pijk can be found by two methods. The first is by de-
termining where Lijk intersects one of the global principal coordinate planes
x = 0, y = 0, or z = 0. The second is by intersecting the planes containing
the centers of sphere Si and the circles Cij and Cik. It turns out the first
method is faster but more complicated to code, while the second method is
slower but simpler to code. We include a discussion of both methods here
and leave the choice to the reader. Each method for pijk has its own asso-
ciated method for finding the intersection points with the two circles, which
we also detail. The goal of the next two subsections is to find angles α1 and
α2 in circle Cij’s angle coordinates which represent the points of intersection
of circles Cij and Cik.

If the circles intersect at less than two points, then we must check if circle
Cik covers Cij by virtue of its 3D orientation in space using relation 17.

The computations of the next two subsections are described with reference
to circle Cij, but also apply to circle Cik with no substantive changes.
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2.3.2 Intersection of two circles - Method 1

Throughout this section we will define numerous intermediate quantities
which should have subscripts of ij, ik or ijk, but which we will eliminate for
clarity. Any code implementation of these ideas must be cognizant of these
dependencies.

If we let

〈a1, b1, c1〉 = nij, (20)

d1 = −nij · cij, (21)

then from equations 18 an equation for the plane of circle Cij is

〈a1, b1, c1〉 · r + d1 = 0. (22)

Similarly, if we let

〈a2, b2, c2〉 = nik, (23)

d2 = −nik · cik. (24)

then an equation for the plane of circle Cik is

〈a2, b2, c2〉 · r + d2 = 0. (25)

The following pseudo-code describes how to find the point pijk where Lijk

crosses one of the global principal coordinate planes x = 0, y = 0, or z = 0.

if uz = 0 (Lijk does not cross the X-Y plane), then
if ux = 0 (Lijk does not cross Y-Z plane), then

px = (c2d1 − d2c1)/(a2c1 − c2a1),
py = 0,
pz = (a1d2 − d1a2)/(a2c1 − c2a1),

else (Lijk crosses Y-Z plane)
px = 0,
px = (c2d1 − d2c1)/(−c2b1 + b2c1),
pz = (−b2d1 + d2b1)/(−c2b1 + b2c1),

else (Lijk crosses X-Y plane)
px = (b2d1 − d2b1)/(−b2a1 + a2b1),
py = (a1d2 − d1a2)/(−b2a1 + a2b1),
pz = 0.
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To determine the points of intersection, we change coordinates from 3D
global x, y and z to 2D coordinates x and y local to circle Cij. Then we
solve the 2D problem of finding the intersection between a circle and line in
a plane. We make the following definitions:

mx = uijk · x̂ij, (26)

my = uijk · ŷij, (27)

r1 = pijk − cij, (28)

x0 = r1 · x̂ij, (29)

y0 = r1 · ŷij. (30)

If mx = 0, define a = 1, b = 0, and c = x0, otherwise define a = −mx/my,
b = 1, and c = y0 + ax. The equation of the projected line thus takes the
canonical form ax+by = c. The equation of the circle Cij in local coordinates

is simply x2 + y2 = r2, where r = C
(r)
ij is the radius.

There are six possible cases for the intersection of the line Lijk and circle
Cij:

1. b = 0 and r2 − c2

a2 < 0⇒ no intersection.

2. b = 0 and r2 − c2

a2 = 0⇒ vertical line, one point of intersection:

x1 =
c

a
, y1 = 0. (31)

3. b = 0 and r2 − c2

a2 = 0⇒ vertical line, two points of intersection:

x1 =
c

a
, y1 =

√
r2 − c2

a2
, (32)

x2 =
c

a
, y2 = −

√
r2 − c2

a2
. (33)

4. b 6= 0 and b4r2 − b2c2 + a2r2b2 < 0⇒ no intersection.

5. b 6= 0 and b4r2 − b2c2 + a2r2b2 = 0 ⇒ not a vertical line, one point of
intersection:

x1 =
ac

a2 + b2
, y1 =

−ax1 + c

b
. (34)
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6. b 6= 0 and b4r2 − b2c2 + a2r2b2 > 0⇒ not a vertical line, two points of
intersection:

x1 =
ac +

√
b4r2 − b2c2 + a2r2b2

a2 + b2
, y1 =

−ax1 + c

b
, (35)

x2 =
ac−

√
b4r2 − b2c2 + a2r2b2

a2 + b2
, y2 =

−ax2 + c

b
. (36)

If there is an intersection, the solutions for x1, y1, x2, and y2 given above
for the points of intersection are converted into angles:

α1 =

{
cos−1

(
x1

r

)
if y1 ≥ 0

2π − cos−1
(

x1

r

)
if y1 < 0

, (37)

α2 =

{
cos−1

(
x2

r

)
if y2 ≥ 0

2π − cos−1
(

x2

r

)
if y2 < 0

. (38)

If α1 > α2, then we swap α1 and α2. This ordering is required for the
ambiguity resolution algorithm described in section 2.3.4.

2.3.3 Intersection of two circles - Method 2

Consider the plane containing the center of the sphere Si and the centers
of the circles Cij and Cik. Its intersection with sphere Si is portrayed by the
large circle in figure 5 denoted by Cijk. Circle Cijk and line Lijk intersect at
a single point, which in this method constitutes our solution for pijk. Figure
6 shows a 2D layout of circle Cijk, with circles Cij and Cjk shown edge-on
as line segments. We make some preliminary definitions for circle Cijk as
follows:

dij = cij − ri, (39)

dik = cik − ri, (40)

nijk =
dij × dik

‖dij × dik‖
, (41)

x̂ijk =
dij

‖dij‖
, (42)

ŷijk = nijk × x̂ijk. (43)
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From figure 6 the point of intersection 〈x, y〉 in coordinates local to circle
Cij can be computed by setting 〈x1, y1〉 = (dik · x̂ij,dik · ŷij) and

x = ‖dij‖ (44)

y =
−x1

y1

(x− x1) + y1. (45)

We assume y1 is non-zero above because the circles Cij and Cik are assumed
not to be parallel. This point of intersection is then expressed in global
coordinates by

pijk = xx̂ijk + yŷijk + ri. (46)

We find its local coordinates in the plane of circle Cij using

dijk = pijk − cij, (47)

pij = 〈x, y〉 = 〈dijk · x̂ij,dijk · ŷij〉. (48)

To find the angles of the intersection points, consider the plane of circle
Cij, shown in figure 7. The angles ω and θ in the diagram are:

ω = cos−1

(
r

C
(r)
ij

)
, (49)

θ =

{
cos−1

(
x
r

)
if y ≥ 0

2π − cos−1
(

x
r

)
if y < 0

, (50)

where r =
√

x2 + y2. The angles of intersection are then just:

α1 = θ − ω, α2 = θ + ω. (51)

The derivation above cannot be used if the line Lijk passes through the
center of circle Cij. In this exceptional case the direction of the line of
intersection is determined and the points of intersection with circle Cij are
computed with the aid of figure 8:

u = 〈ux, uy〉 = 〈uijk · x̂ij,uijk · ŷij〉, (52)

α1 =

cos−1
(

ux

‖u‖

)
if uy ≥ 0

2π − cos−1
(

ux

‖u‖

)
if uy < 0

, (53)

α2 = mod (α1 + π, 2π). (54)

We order the angles of intersection as in method 1: if α1 > α2, then
swap α1 and α2.
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2.3.4 Resolving ambiguity in circle intersections

If there are two points of intersection for Cij and Cik we must determine
which portion of circle Cij is covered by projecting the normal vector of Cik

into the plane of circle Cij (figure 9). This projection points to the part of
circle Cij that is covered and is given by:

w = 〈wx, wy〉 = 〈nik · x̂ij,nik · ŷij〉. (55)

The angle of the projected normal vector of Cik is

φ =

cos−1
(

wx

‖w‖

)
if wy ≥ 0

2π − cos−1
(

wx

‖w‖

)
if wy < 0.

(56)

Let Aijk denote the arc on circle Cij due to its intersection with Cik. This
arc is assigned an interval on the real line according to

Aijk =

{
[α1, α2] if φ ∈ [α1, α2]

[α2, α1 + 2π] if φ /∈ [α1, α2].
(57)

2.3.5 Checking coverage of a circle

The circle Cij is covered by its arcs if:

[0, 2π) ⊂
⋃
k

Aijk. (58)

If all the arcs are computed beforehand, an algorithm for making this deter-
mination is given in [4] which uses the quicksort algorithm to order the arcs
by their left endpoint. The resulting sorted list of arcs is then checked for
gaps between right endpoints and left endpoints.

We provide here an alternate method of determining coverage using a
dynamic linked list that represents the complement of union of the set of
arcs known at any point in time. Thus we can stop mapping arcs to a
circle when we know that the circle is fully covered, and it is not necessary
to compute all arcs beforehand. The linked list is initialized to the whole
interval C = [0, 2π), and when it is empty, the circle is covered. As the
process of finding circle intersections and mapping arcs is time-consuming,
the linked-list technique for arc complements can provide substantial savings
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in CPU resources. Mathematically, the linked list represents the intersection
of the complements of the arc intervals:

Lij =
⋂
k

(
C − Ãijk

)
, (59)

where Ãijk is the interval Aijk adjusted to fit inside C:

Aijk = [α1, α2], (60)

Ãijk =

{
Aijk if α2 < 2π

[0, α2 − 2π] ∪ [α1, 2π) if α2 ≥ 2π.
(61)

Mapping arcs to the circle Cij is thus described by successive intersections
in equation 59:

Lij := Lij ∩
(
C − Ãijk

)
= Lij − Ãijk. (62)

From this we see that an update for a new arc will consist of “cutting out”
some intervals and parts of intervals contained in the previous linked list
iteration. An example of updating the list is given in figure 10. Observe that
the linked list is always ordered, in the sense that it always “points to the
right”. The condition that circle Cij is covered by arcs (equation 58) is that
the linked list be empty:

Lij = ∅ ⇔ Cij is covered. (63)

Each update to the linked list requires finding intervals within it that
contain the left and right endpoints of the new arc. A naive search procedure
for finding these intervals would produce a running time of O(N2), where
N is the number of arcs. A binary search procedure would reduce this to
O(N log N), which is the same as for the quicksort method of [4]. In this
case we expect on average that the linked list method will be faster than the
quicksort method since the linked list method terminates as soon as the list
becomes empty.

3 Examples and Timing

The above boundary detection algorithm was implemented in the SPHINX
hydrodynamic code [2] and tested on a cube (figure 11), a sphere (figure 12),
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and two cylinders (figure 13). Each problem was run for 5 time steps in
order to average out the timings for each application of the algorithm. The
three-dimensional exposure method correctly determines the boundary in all
cases.

An upper bound for run time of the algorithm is O(MN2), where M is
the total number of particles and N is the average number of neighbors per
particle, and is less favorable than O(MNlogN) obtained for two dimensions.
The plot in figure 14 confirms that the algorithm is linear in the total number
of particles. The two cylinders test case was used, increasing the number of
particles while keeping the number of neighbors per particle approximately
the same. The run time was averaged over 5 time steps.

In figure 15 the average time finding the boundary for each particle is
plotted against the average number of neighbors per particle. The run times
vary with the shape of the object, due to the different surface to volume
ratios of the shapes. The different numbers of neighbors were obtained by
varying the smoothing length. The run times were averaged over the number
of particles because the different shapes contain different numbers of particles
and are modeled by λN ε, where N is the number of neighbors and λ and ε
are constants. Table 1 gives a least squares fit of the data in figure 15 for
λ and ε. The observed values of ε ∈ [1.6, 1.7] are better than the predicted

Shape λ ε

2 cylinders 4.81× 10−6 1.62
sphere 3.77× 10−6 1.67
cube 4.33× 10−6 1.64

Table 1: Exponents.

value of ε = 2, due probably to the measures introduced in sections 2.2 and
2.3.5 for reducing the number of circle intersections computed.

The run times for the two methods of computing the intersections of cir-
cles described in sections 2.3.2 and 2.3.3 are compared in figure 16. Method
1 is asymptotically slightly faster than method 2. The runs used 1000 par-
ticles while varying the average number of neighbors per particle and again
averaging over 5 time steps.

A time sequence from a ball and plate impact simulation similar to that
presented in reference [4] is shown in point-cloud representation in figure 17.
The red points are boundary points selected by the 3D exposure method and
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the blue points are interior. In figure 18 a cut-away of the set of spheres
of radius 0.5-h from a single time-step in this simulation is shown. The
ability to dynamically detect void opening and closure is shared with that
demonstrated by the two-dimensional method of reference [4].

The technique for computing geometric boundary normals given in ref-
erence [4] also applies to the present three-dimensional algorithm. The geo-
metric normal is given by

n(xi) = −
∑
j /∈B
∇φS

j (xi), i ∈ B (64)

φS
i (x) = Wi(x)/

∑
j /∈B

Wj(x), (65)

where B is the set of all boundary particle indices. Figure 19 shows a time step
of the same ball-and-plate simulation rendered in a surface representation
where a disk is drawn perpendicular to the above normal and displaced from
the center of the sphere a distance of 0.5 h. Interior particles are not shown.

The time to make the boundary identification using the new 3D exposure
method in these simulations was found to be comparable to that required to
compute the moving-least-squares 3D linear interpolant. Thus the exposure
method should not add significantly to cost of a dynamic calculation.
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Si

Sj
Cij

Figure 1: Green circle represents candidate boundary sphere Si. Black arcs
represent portions of neighboring spheres Sj. Circles of intersection Cij are
in blue. Red arcs are those portions of circles of intersection which are not
covered.

21



hi hjCij
r( )

ijθ

ij ijλ ∆

ij∆ r
ir

jr
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Figure 3: Local coordinate system for a circle on the surface of a sphere.
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Figure 4: How one circle can cover another circle without intersecting it.
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Figure 5: Nomenclature for circle intersection method 2. The point pijk is
the intersection of the planes of circles Cijk, Cij and Cik.
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Figure 6: Finding the intersection point for circle intersection method 2 in
the plane of circle Cijk.
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Figure 7: Finding α1 and α2 in the plane of circle Cij for circle intersection
method 2.
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Figure 8: Definition of α1 and α2 when Lijk passes through the center of
circle Cij.
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Figure 9: Line Lijk divides circle Cij into two parts. The projection w of nik

into the plane of circle Cij points to the covered part.
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Figure 10: Example of updating linked list to remove arcs of intersection.
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Figure 11: Results of boundary detection on a cube. Red points are on
boundary, blue are in interior. Spacing was 1 − h. Only center points are
shown.
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Figure 12: Results of boundary detection on a sphere. Red points are on
boundary, blue are in interior. Spacing was 1 − h. Only center points are
shown.
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Figure 13: Results of boundary detection on two cylinders. Red points are
on boundary, blue are in interior. Spacing was 1− h. Only center points are
shown.
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Figure 14: Plot of run time vs. number of particles with number of neighbors
held constant.
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35



20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

20

neighbors/particle

se
co

nd
s

Cube, M=1000

Method 1
Method 2

Figure 16: Circle intersection method 1 vs. method 2.
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Figure 17: Point cloud visualization of 3D ball-on-plate impact simulation.
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Figure 18: Cut-away of 3D ball-on-plate impact simulation.
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Figure 19: Representation of boundary normals by hexagonal disks.
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